
On the evaluation of magnetisation fluctuations with Q2R cellular automata

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 943

(http://iopscience.iop.org/0305-4470/22/8/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 07:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 943-950. Printed in the UK 
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Abstract. We discuss the evaluation of fluctuations with the Q2R cellular automata. Explicit 
calculations are performed for the two-dimensional case. We argue that when Q2R results 
are compared properly with Monte Carlo simulations there are no inconsistencies at low 
temperatures as claimed recently. 

1. Introduction 

A cellular automaton (Wolfram 1984) consists of a finite set of N discrete variables 
vi ( i  = 1, . . . , N ) ,  the temporal evolution of which is dictated by a rule of the general 
form 

= @ i ( { d } ) .  (1) 

In Q2R automata (Pomeau 1984) the v are Ising variables defined on a square 
L x L lattice with nearest-neighbour interactions. The dynamics is such that spins are 
flipped only when they have as many neighbours up as down. Dividing the system 
into two interpenetrating lattices in such a way that each site of one sublattice has its 
neighbours on the other sublattice, the updating may be done for all the variables on 
a sublattice simultaneously while conserving the energy. Then, updating the sublattices 
one at a time, one supposedly has a microcanonical ( p c )  simulation of the Ising model. 
The algorithm can be readily generalised to higher dimensionalities or to non-nearest- 
neighbour interactions. In this last case the number of sublattices in which the system 
is split must be greater than two in order to ensure that no site interacts with another 
on its own sublattice. The possibility of simultaneous update and the deterministic 
character of this algorithm (no random numbers are needed) allow high-speed simula- 
tions, with 4.3 x 10’ spin-flip attempts per second on a Cray (Herrmann 1986, Zabolitzky 
and Herrmann 1987). While the spontaneous magnetisation of the Ising model is well 
reproduced by this algorithm, it is not yet certain (Herrmann et a1 1987, Lang and 
Stauffer 1987) under which conditions Q2R automata can be regarded as equivalent 
to the Ising model. 

Recently Lang and Stauffer (1987) found for the three-dimensional Q2R automata 
what they interpreted to be a deviation from the expected behaviour of the zero-field 
susceptibility ,y measured through 

= N ~ ( A M ~ )  (2) 
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with 

(AM’) = (M’) - ( M)’ (3) 

and 

l N  
N i-1 

M = -  wi (4) 

and compared with Monte Carlo (MC) results. 
In this work we stress the fact that in a pc ensemble the zero-field susceptibility 

x is not given by (2) because magnetisation fluctuations are not independent of the 
ensemble (Lebowitz 1967) while x is. Fluctuations in a pc ensemble differ from those 
given by MC simulations by a correction term which is relevant even in the thermo- 
dynamic limit. We calculate the correction using MC and show that Q2R gives, in the 
limit of large lattices, the expected result for magnetisation fluctuations in a pc 
ensemble. We work with two-dimensional lattices but we expect the same to be valid 
in three dimensions. 

As a different but related topic, we compare several methods of measuring with 
Q2R automata and make some suggestions which could help to clarify the equivalence 
between the Ising model and Q2R automata. 

2. General observations 

2.1. Fluctuations in a pc ensemble 

The first thing one has to notice is that while expectation values of extensive magnitudes 
are independent of the ensemble in the limit N + m ,  this is no longer true for the 
average value of fluctuations, which do possess a dependence on the ensemble 
(Lebowitz 1967). The simplest example of this is given by energy fluctuations which 
of course vanish in a pc ensemble but are related to the specific heat in a canonical 
ensemble. 

Let us denote by ( )@ and ( )E the canonical and pc ensemble averages respectively. 
If there is no subscript, an arbitrary ensemble is understood. 

The zero-field susceptibility 

where h stands for the external magnetic field, is not given by (2) when the averages 
are taken in a pc ensemble because N ( A M 2 ) E  has an O(1) correction with respect to 
the canonical ensemble. 

Let us define 

e ( p )  = N P ( A M ’ ) ~  (6) 

E ( P )  = ( E ) @ .  (7) 

where the pc average is taken at the value of the energy which satisfies 

Then the following relation holds (see appendix): 
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Let us note that the correction term remains finite in the thermodynamic limit. This 
implies that the conclusions of Lang and Stauffer (1987) are unfounded since they 
compare 8 with ,y disregarding this term. 

We conclude that the average value of fluctuations obtained with the Q2R cellular 
automata should be compared with the same magnitude estimated with a pc ensemble. 
In practice what we shall do is to calculate e ( @ )  by means of MC simulations using 
(8) to evaluate the correction. Let us remark, however, that apart from that term there 
are also finite-size corrections O( 1/ N ) ;  because of this the automata will become 
comparable to the estimated pc fluctuation only for large N. 

2.2. On how to measure with Q2R 

Because of the reversibility and deterministic character of this algorithm each spin 
configuration belongs to a cycle, i.e. the initial configuration is recovered after 1 
updatings, where 1 is the length of the cycle (Herrmann 1986, Herrmann et a1 1987). 
For this reason if one starts from a given phase-space point the only accessible 
configurations are those which belong to the same cycle as the initial point. This means 
that the Q2R automata generate phase-space points with a weight which is not truly 
pc. Of course this does not mean that Q2R cannot be used to calculate pc averages. 
It is clear that if one could complete all cycles with a fixed energy once, then all 
configurations with that energy would be reached with even weight. As one cannot 
do that in practice, it is necessary to decide how to measure. Since different choices 
can lead to different averages, we will analyse which ones are correct and easy to 
implement. 

Let us suppose one decides to take as a phase-space sampling the set of configur- 
ations obtained by completing a given number, P, of cycles. The corresponding P 
starting configurations are chosen with pc weight at that energy and with a magnetisa- 
tion of definite sign. This means that the probability for a given cycle to be selected 
is proportional to its length I ;  as a result, phase-space points are generated with a 
weight proportional to the length of the cycle containing that configuration. For this 
reason the pc average will not be obtained as a direct average over the whole set of 
configurations generated in that way; rather one has to take a weighted average with 
a factor 1/ 1 to compensate for the fact pointed out above. This turns out to be equivalent 
to assigning to each starting configuration the average value calculated on its cycle 
and then averaging over initial configurations (or cycles) with equal weights (see 
equation (9)). 

An alternative way to take averages with correct pc weights is to select P cycles 
and to consider a fixed number, K,  of updatings in each of them. As before the 
probability for a cycle to be selected is proportional to 1, but now the probability for 
a given configuration within that cycle to be reached is K I l .  The factors cancel out 
and configurations appear with even weights. 

Both methods reduce to 

where ( F ) ,  is the average of F on the whole or a part of cycle s. 

magnetisation fluctuations as long as K is not too small. 
We have tested both methods and have found that they yield similar results for the 
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Apart from what we have just pointed out, let us remark that it is not correct to 
take the single-cycle magnetisation fluctuation as representative of the pc average. 
The reason for this is that it would be an underestimation of the pc value because we 
will not be considering the intercycle fluctuations. This can be easily shown. 

Let us denote the single-cycle value of ( A M 2 )  by 6, and with its average over cycles 
by 6,: 

& = ( A M 2 ) ,  = ( M 2 ) , - ( M ) f  (10) 
l P  
p s = l  

S I = & = -  ss 

where ( 
overbar denotes the average over cycles. 

generated configurations are (using (9)): 

means average over the configurations belonging to the cycle s and the 

On the other hand, the total fluctuations calculated over the whole set of the 

which proves the statement above. 
As a consequence of this fact, if the intercycle fluctuations are important, one will 

never get a correct estimate of their total value by averaging on one cycle only. As 
we shall see at the end of the next section, this is indeed the case at low temperatures. 

3. Numerical results 

Motivated by the observations of 0 2, we measured O ( p )  with Q2R using (6) and with 
MC using (8). Both programs were written using multispin coding (Jacobs and Rebbi 
1981, Williams and Kalos 1984). For the MC program we used a version of multispin 
coding similar to that of Williams and Kalos (1984) where the whole updating process 
is done in parallel. 

Monte Carlo results for magnetisation fluctuations were obtained updating the 
whole lattice 12 000 times at each temperature, discarding the first 2000 iterations to 
allow for thermalisation, and then measuring M and E after each tenth MC step. 

The link between the canonical ensemble with fixed p and the pc ensemble with 
fixed E is made by taking the MC energy to be the mean value ( E ) p  obtained in the 
canonical ensemble at inverse temperature p. For Q2R simulations we used the exact 
relation (Huang 1963) to obtain p from E. We estimated ( M )  and ( M 2 )  using (9) and 
averaging over 20 different cycles at each value of the energy. The initial configurations 
were obtained from the ordered state by flipping spins at random locations till the 
desired value of E was reached. On each cycle the system was updated 10 000 times 
and M was measured after every updating. The simulation was finished on those 
cycles where the starting configuration was reached again before 10 000 updatings. 

In figure 1 we show our results for the magnetisation fluctuations. For comparison 
purposes we include our MC data for x, the pc value 0 calculated using (8), and Q2R 
results for different values of L. The Monte Carlo and the corresponding pc estimate 
are shown for our largest lattice, L=64,  only. 
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Figure 1. Magnetisation fluctuation data for canonical (0) and microcanonical (0) 
ensembles calculated by Monte Carlo for L = 64, and Q2R magnetisation fluctuations for 
L=6 (+), L = l O  (A),  L = 2 0  (U) and L = 6 4  (W). 

Let us notice that even at the largest size we considered there is still a difference 
between the estimated pc and the Q2R results. This could be attributed to the O( 1/ N )  
correction terms to the pc data coming from the change of ensemble (see equation 
(8)), not included in figure 1. Let us give, however, a word of caution; there is still 
the possibility that the dynamics of the automaton itself introduces other finite-size 
effects or, even worse, O( 1) differences with respect to an exact pc. Our data, however, 
do not rule out the consistency between Q2R magnetisation fluctuations and the 
two-dimensional Ising model. 

As discussed in Q 2.2, the intercycle fluctuations may give a relevant contribution 
to the susceptibility. This is shown to be true in figure 2, where we show the relative 

7 

Figure 2. Relative intercycle fluctuations A plotted against temperature for Q2R with L = 64. 
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- 
1 -  0 

d 
e 

intercycle fluctuation A 

A = ( 6 2  - S,)/S2 (14) 

as a function of temperature. The data in figure 2 are for L=64, but we found a 
similar behaviour on the other lattices. In general, the intercycle fluctuations are half 
the total fluctuations at low temperature but vanish approximately at the point where 
the total fluctuations coincide with MC results. 

4. Conclusions 

We have shown that the magnetisation fluctuations for the Ising model in a pc ensemble 
differ from the canonical value for T < T,. For that reason, it is not correct to compare 
Q2R fluctuations with MC fluctuations directly; rather, these have to be corrected in 
order to estimate the pc averages. Once this correction is considered, Q2R still fails 
to give the pc values for the magnetisation fluctuations, but our data suggest that the 
remaining differences may be finite-size effects. 

As has already been observed (Herrmann 1986, Herrmann et a1 1987), in order to 
obtain a good estimate of a given quantity one has to take into account the contributions 
of many cycles. We have seen that for ( M )  (and so for (AM'), see equation (13)) this 
is necessary only at low temperature where our data show that the intercycle fluctuations 
represent a substantial fraction of (AM2) .  At higher temperature this contribution 
becomes negligible so a single cycle average is enough. 

We have also tested the dependence of the observed fluctuations on the number, 
K, of the updatings that one does on each cycle and we found that near T, the values 
for K = 1000 and K = 10 000 differ (figure 3). This effect was not observed (with the 
same values for K )  in our smaller lattices, for which the mean cycle lengths were not 
too big at that temperature. For this reason we expect that in order to obtain an 
approximation to the complete cycle average, K should not be taken too small compared 
with the cycle length. This would imply that the required observation times grow 

I I I I I I 
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0 -  
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T 

Figure 3. Dependence of the observed fluctuations on the number, K ,  of iterations per 
cycle for Q2R with L = 64. The data shown correspond to K = 1000 (0) and K = 10 000 (0). 
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strongly with N near T, and this fact, together with the necessity of averaging over 
several cycles, might make the efficiency of the algorithm uncertain. 

Appendix 

Here we sketch the derivation of (8). For a discussion in the case of more general 
ensembles, see Lebowitz (1967). 

Let us denote the pc average of F by ( F ) E  : 

with 

g ( E ) = C  S(Er-E)  
r 

where 2, stands for a sum over the whole phase space of the system. 
Analogously, ( F ) ,  is the canonical average 

with 

Then it is easily shown that 

Expanding ( F ) E  in powers of (E  - E )  (where = ( E ) , ) ,  we obtain 

( F ) ,  = ( F ) E  - f E d 2 0 , + O ( ( F ) / N 2 )  
dp d E 2  

where all functions of E are evaluated at I?. 
One can readily see that the term 

d E  a 2 ( ~ )  -- 
dp dE2 

vanishes like 1/N, so in the thermodynamic limit we obtain the same average in both 
ensembles. 

Now, in the case of fluctuations 

(AFAG), = (AFAG)‘ aoE+((AFAG)/ N ) .  aB d E  d~ 
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Here the correction term 

a E a( F )  a( G )  
ap aE aE 
--- 

is of the same order, 1 / N ,  as ( A F A G )  itself. 

( M ) E  by ( M ) ,  (to the same order), we obtain 
For the case of magnetisation fluctuations both F and G are M, so approximating 

from which (8) stems. 
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